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polynomial in the degree and
without logarithmic factors

Wouter Castryck, Raf Cluckers, Philip Dittmann and Kien Huu Nguyen

We study Heath-Brown’s and Serre’s dimension growth conjecture (proved by Salberger) when the degree
d grows. Recall that Salberger’s dimension growth results give bounds of the form OX,ε(Bdim X+ε) for the
number of rational points of height at most B on any integral subvariety X of Pn

Q of degree d ≥ 2, where
one can write Od,n,ε instead of OX,ε as soon as d ≥ 4. We give the following simplified and strengthened
forms of these results: we remove the factor Bε as soon as d ≥ 5, we obtain polynomial dependence
on d of the implied constant, and we give a simplified, self-contained approach for d ≥ 16. Along the
way, we improve the well-known bounds due to Bombieri and Pila on the number of integral points of
bounded height on affine curves and those by Walsh on the number of rational points of bounded height
on projective curves. This leads to a slight sharpening of a recent estimate due to Bhargava, Shankar,
Taniguchi, Thorne, Tsimerman and Zhao on the size of the 2-torsion subgroup of the class group of a
degree d number field. Our treatment builds on recent work by Salberger, who brings in many primes in
Heath-Brown’s variant of the determinant method, and on recent work by Walsh and by Ellenberg and
Venkatesh who bring in the size of the defining polynomial. We also obtain lower bounds showing that
one cannot do better than polynomial dependence on d .

1. Introduction and main results

1.1. Following a question raised by Heath-Brown [1983, page 227] in the case of hypersurfaces, Serre
[1992, page 27; 1989, page 178] twice formulated a question about rational points on a projective variety
X of degree d, which was dubbed the dimension growth conjecture by Browning [2009]. The question
puts forward concrete upper bounds on the number of such points with height at most B, as a function
of B. This dimension growth conjecture is now a theorem due to Salberger [2013] (and others under
various conditions on d); moreover, for d ≥ 4 Salberger obtains complete uniformity in X , keeping only
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d and the dimension of the ambient projective space fixed, thereby confirming a variant that had been
proposed by Heath-Brown.

We remove from these bounds the factors of the form Bε when the degree d is at least 5, without
creating a factor log B, while moreover obtaining polynomial dependence on d of the constants. The
approach with polynomial dependence on d is implemented in all auxiliary results as well, and this has
the pleasant consequence of yielding a more direct and self-contained proof of the dimension growth
conjecture for d at least 16 (our treatment of dimension growth for 5 ≤ d ≤ 15 is not self-contained
and uses [Browning et al. 2006] when d > 5 and [Salberger 2013] for d = 5). Theorems 2 and 3 below
give such improvements to bounds by Walsh [2015] on the number of rational points of bounded height
on integral projective curves, and to bounds of Bombieri and Pila [1989, Theorem 5] on the number of
integral points of bounded height on affine irreducible curves, with rather low powers of d, compared
to [Walkowiak 2005]. Polynomial dependence on d for projective curves as in Theorem 2 is useful
for effective versions of Hilbert’s irreducibility theorem and for Malle’s conjecture; see [Dèbes and
Walkowiak 2008; Motte 2018; Walkowiak 2005].

The possibility of polynomial dependence on d came to us via a question raised by Yomdin (see
below Remark 3.8 of [Burguet et al. 2015]) in combination with the determinant method with smooth
parametrizations as in [Pila 2010], refined in [Cluckers et al. 2020b], and via the work by Binyamini and
Novikov [2019, Theorem 6]. The removal of the factor Bε without needing log B was recently achieved
by Walsh [2015, Theorems 1.1, 1.2, 1.3] who combines ideas by Ellenberg and Venkatesh [2005] with the
determinant method based on p-adic approximation (rather than on smooth maps) due to Heath-Brown
[2002], refined in [Salberger 2013]. In fact, polynomial dependence on d for the case of projective curves
was also achieved in [Motte 2018] and [Walkowiak 2005], with a higher exponent. One cannot achieve
dependence on d better than polynomial, as shown by the lower bounds from Proposition 5 below. Let
us mention that positive characteristic analogues, over Fq [t], are obtained in [Cluckers et al. 2020a] and
[Sedunova 2017] for curves, and in [Vermeulen 2020] for dimension growth.

1.2. Let us make all this more precise. We study the number

N (X, B)

of rational points of height at most B on subvarieties X of Pn defined over Q. Here, the height H(x) of a
Q-rational point x in Pn is given by

H(x)=max(|x0|, . . . , |xn|)

for an (n+1)-tuple (x0, . . . , xn) of integers xi which are homogeneous coordinates for x and have greatest
common divisor equal to 1.

Salberger [2013] proved the so-called dimension growth conjecture raised as a question by Serre [1992,
page 27] following a question of Heath-Brown [1983, page 227].
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Dimension growth [Salberger 2013, Theorem 0.1]. If X is an integral projective variety of degree d ≥ 2
defined over Q, then

N (X, B)≤ OX,ε(Bdim X+ε).

One should compare the bound for N (X, B) from this theorem to the trivial upper bound Od,n(Bdim X+1)

that follows from Lemma 4.1.1 below.
A variant of this question from [Serre 1989, page 178] replaces the factor Bε by log(B)c for some c

depending on X , see Section 1.4 below.
Heath-Brown [2002] introduces a form of this conjecture with uniformity in X for fixed d and n, and

he develops a new variant of the determinant method using p-adic approximation instead of smooth
parametrizations as in [Bombieri and Pila 1989; Binyamini and Novikov 2019; Pila 2010; Cluckers et al.
2020b]. In [Salberger 2013], Salberger proves this uniform version of the dimension growth conjecture
for d ≥ 4.

Uniform dimension growth [Salberger 2013, Theorem 0.3]. For X ⊆ Pn
Q

an integral projective variety
of degree d ≥ 4, one has

N (X, B)≤ Od,n,ε(Bdim X+ε).

Almost all situations of this uniform dimension growth had been obtained previously in [Heath-Brown
2002] and [Browning et al. 2006], including the case d = 2 but without the (difficult) cases d = 4 and
d = 5. Our main contributions are to make the dependence on d polynomial, to remove the factor Bε

without having to use factors log B, and to provide relatively self-contained proofs for large degree, with
main result as follows.

Theorem 1 (uniform dimension growth). Given n > 1, there exist constants c = c(n) and e = e(n), such
that for all integral projective varieties X ⊆ Pn

Q
of degree d ≥ 5 and all B ≥ 1 one has

N (X, B)≤ cde Bdim X . (1-2-1)

As mentioned earlier, one cannot do better than polynomial dependence on d, see the lower bounds
from Proposition 5 and Section 6 below.

We heavily rework results and methods of Salberger, Walsh, Ellenberg and Venkatesh, Heath-Brown,
and Browning, and use various explicit estimates for Hilbert functions, for certain universal Noether
polynomials as in [Ruppert 1986], and for solutions of linear systems of equations over Z from [Bombieri
and Vaaler 1983].

1.3. Rational points on curves and hypersurfaces. Let us make precise some of our improvements for
counting points on curves and surfaces, which are key to Theorem 1. We obtain the following improvement
of Walsh’s Theorem 1.1 [2015].
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Theorem 2 (projective curves). Given n > 1, there exists a constant c = c(n) such that for all d > 0 and
all integral projective curves X ⊆ Pn

Q
of degree d and all B ≥ 1 one has

N (X, B)≤ cd4 B2/d .

In view of Proposition 5 below, the exponent 4 of d in Theorem 2 can perhaps be lowered, but cannot
become lower than 2 in general. Several adaptations of results and proofs of [Walsh 2015] are key to our
treatment and are developed in Section 3.

For affine counting we use the following notation for a variety X ⊆ An
Q

and a polynomial f in
Z[y1, . . . , yn]:

Naff(X, B) := #{x ∈ Zn
| |xi | ≤ B for each i and x ∈ X (Q)},

and
Naff( f, B) := #{x ∈ Zn

| |xi | ≤ B for each i and f (x)= 0}.

By a careful elaboration of the argument from [Ellenberg and Venkatesh 2005, Remark 2.3] and an
explicit but otherwise classical projection argument, we find the following improvement of bounds by
Bombieri and Pila [1989, Theorem 5] and later sharpenings by Pila [1995; 1996], Walkowiak [2005],
Ellenberg and Venkatesh [2005, Remark 2.3], Binyamini and Novikov [2019, Theorem 6], and others.

Theorem 3 (affine curves). Given n > 1, there exists a constant c = c(n) such that for all d > 0, all
integral affine curves X ⊆ An

Q
of degree d, and all B ≥ 1 one has

Naff(X, B)≤ cd3 B1/d(log B+ d).

A variant of Theorem 3 is given in Section 4, where log B is absent and instead the size of the
coefficients of the polynomial f defining the affine planar curve comes in.

It is well-known that Theorems 1, 2, and 3 imply similar bounds for varieties defined and integral over
Q (instead of Q), by intersecting with a Galois conjugate and using a trivial bound, see Lemma 4.1.3.
The following improves Theorem 0.4 of [Salberger 2013] and is key to Theorem 1. It can be seen as an
affine form of the dimension growth theorem, for hypersurfaces.

Theorem 4 (affine hypersurfaces). Given n > 2, there exist constants c= c(n) and e= e(n), such that for
all polynomials f in Z[y1, . . . , yn] whose homogeneous part of highest degree h( f ) is irreducible over Q

and whose degree d is at least 5, one has

Naff( f, B)≤ cde Bn−2.

One should compare the bound from this theorem to the trivial upper bound Od,n(Bn−1) from
Lemma 4.1.1.

1.4. Example and a question. In Serre’s example [1989, page 178] of the degree 2 surface in P3 given
by the equation xy = zw, the logarithmic factor log B cannot be dispensed with in the upper bound.
Hence, (1-2-1) of Theorem 1 cannot hold for d = 2 in general. For d = 3, the bound from (1-2-1) remains
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wide open since already uniformity in X ⊆Pn of degree 3 is not known for the uniform dimension growth
with Od,n,ε(Bdim X+ε) as upper bound (see [Salberger 2015; 2013] for subtleties when d = 3). For d = 4,
one may investigate whether (1-2-1) of Theorem 1 remains true, that is, without involving a factor Bε or
log B.

1.5. Lower bounds. In Section 6 we discuss the necessity of the polynomial dependence on d in the
above theorems.

Proposition 5. For each integer d > 0 there is an integral projective curve X ⊆ P2 of degree d and an
integer B ≥ 1 such that

1
5 d2 B2/d

≤ N (X, B).

In particular, in the statement of Theorem 2 it is impossible to replace the factor d4 with an expression in
d which is o(d2).

Similarly we show that it is impossible to replace the quartic dependence on d of the bound from
Theorem 3 by a function in o(d2/ log d). We also show that in Theorems 1 and 4 we cannot take e< 1 or
e < 2, respectively.

1.6. An application. Our bounds with improved exponent can be used as substitutes for those by Sal-
berger, Bombieri and Pila, and Walsh upon which they improve, potentially leading to stronger statements.
A very recent example of such an application is Bhargava, Shankar, Taniguchi, Thorne, Tsimerman and
Zhao’s bound [Bhargava et al. 2020, Theorem 1.1] on the number h2(K ) of 2-torsion elements in the
class group of a degree d > 2 number field K , in terms of its discriminant 1K . Precisely, they show that

h2(K )≤ Od,ε(|1K |
1/2−1/(2d)+ε),

thereby obtaining a power saving over the trivial bound coming from the Brauer–Siegel theorem. This
power saving is mainly accounted for by an application of Bombieri and Pila’s bound [1989, Theorem 5].
In Section 4 we explain how our improved bound stated in Theorem 3, or rather its refinement stated
in Corollary 4.2.4, allows for removal of the factor |1K |

ε as soon as d is odd; if d is even then we can
replace it by log|1K |.

Theorem 6. For all degree d > 2 number fields K we have

h2(K )≤ Od(|1K |
1/2−1/(2d)(log|1K |)

1−(d mod 2)).

It is possible to make the hidden constant explicit, but targeting polynomial growth seems of lesser
interest since |1K | is itself bounded from below by an exponential expression in d, coming from
Minkowski’s bound.

1.7. Structure of the paper. In Section 2 we render several results of Salberger [2007] explicit in terms
of the degrees and dimensions involved. In Section 3 we similarly adapt the results of Walsh [2015].
Section 4 completes the proofs of our main results in the hypersurface case, which is complemented by
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Section 5, in which we discuss projection arguments from [Browning et al. 2006], explicit in the degrees
and dimensions, and thus finish the proofs of our main theorems. Finally, in Section 6, we provide lower
bounds showing the necessity of polynomial dependence on d in our main results.

2. The determinant method for hypersurfaces

With the aim of improving the results of [Walsh 2015] in the next section, we sharpen some results from
Salberger’s global determinant method. The main result of this section is Corollary 2.9, which improves
on [Salberger 2013, Lemmas 1.4, 1.5] (see also [Walsh 2015, Theorem 2.2]). This mainly depends on
making [Salberger 2007, Main Lemma 2.5] in the case of hypersurfaces explicit in its independence of
the degree.

Let f be an absolutely irreducible homogeneous polynomial in Z[x0, . . . , xn+1] which is primitive,
and let X be the hypersurface in Pn+1

Q
defined by f . For p a prime number, let X p denote the reduction

of X modulo p, i.e., the hypersurface in Pn+1
Fp

described by the reduction of f mod p.

Lemma 2.1 (Lemma 2.3 of [Salberger 2007], explicit for hypersurfaces). Let A be the stalk of X p at some
Fp-point P of multiplicity µ and let m be the maximal ideal of A. Let gX,P : Z>0→ Z be the function
given by gX,P(k)= dimA/mmk/mk+1 for k > 0. Then one has

g(k)=
(n+k

n

)
for k < µ

and

g(k)=
(n+k

n

)
−

(n+k−µ
n

)
for k ≥ µ.

In particular,

g(k)≤
µkn−1

(n− 1)!
+ On(kn−2)

for all k ≥ 1, where the implied constant depends only on n, as indicated.

Proof. The function g is identical to the Hilbert function of the projectivized tangent cone of X p at P ,
which is a degree µ hypersurface in Pn . This gives the explicit expression for g, so it only remains to
prove the estimate.

Consider first k < µ. Then

g(k)=
(n+k

n

)
=

kn

n!
+
(n+ 1)kn−1

2(n− 1)!
+ On(kn−2).

Since µ > k, for k ≥ n we immediately obtain the desired inequality, and the k between 1 and n are
covered by choosing the constant large enough.

Now consider k ≥ µ. Write p(X) for the polynomial
(n+X

n

)
and ai for its coefficients. Then

p(k)− p(k−µ)= an(kn
− (k−µ)n)+ an−1(kn−1

− (k−µ)n−1)+ On(kn−2).
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Observe that an = 1/n!, an−1 = (n+ 1)/(2(n− 1)!)= an(n+ 1)n/2, and write

kn
− (k−µ)n = µ(kn−1

+ (k−µ)kn−2
+ · · ·+ (k−µ)n−1)

as well as

kn−1
− (k−µ)n−1

= µ(kn−2
+ · · ·+ (k−µ)n−2).

Considering µ≥ n(n+ 1)/2, we have

(k−µ)i kn−1−i
+
(n+ 1)n

2
(k−µ)i−1kn−1−i

≤ kn−1

for i ≥ 1, and hence

an(kn
− (k−µ)n)+ an−1(kn−1

− (k−µ)n−1)≤
µ

n!
(kn−1

+ · · ·+ kn−1)= µ
kn−1

(n− 1)!

as desired.
For µ less than n(n + 1)/2, one simply bounds kn−1

− (k − µ)n−1
≤ On(kn−2) and the statement

follows. �

Lemma 2.2. Let c, n, µ > 0 be integers. Let g : Z≥0→ Z>0 be a function with g(0)= 1 and satisfying
g(k)≤ µkn−1/(n− 1)! + cµkn−2 for k > 0. Let (ni )i≥1 be the nondecreasing sequence of integers m ≥ 0
where m occurs exactly g(m) times. Then for any s ≥ 0 we have

n1+ · · ·+ ns ≥

(
n!
µ

)1/n n
n+ 1

s1+1/n
− On,c(s).

This statement is implicitly contained in the proof of [Salberger 2007, Main Lemma 2.5], but we give
the full proof to stress that the error term does not depend on µ.

Proof. Note that replacing g by a function which is pointwise larger than g at any point only strengthens
the claim, so we may as well assume that

g(k)=
µ

n!
(kn
− (k− 1)n)+ cµ(kn−1

− (k− 1)n−1)

for k > 0. Let G : Z≥0→ Z≥0 be given by G(k)= g(0)+ · · ·+ g(k)= µ
n!k

n
+ cµkn−1

+ 1. Now(
n!
µ

)1/n n
n+ 1

G(k)1+1/n
=

µkn+1

(n− 1)!(n+ 1)
+ On,c(µkn),

and

0g(0)+ · · ·+ kg(k)≥
µ

(n− 1)!

∑
i≤k

(in
+ On(cin−1))=

µ

(n− 1)!(n+ 1)
kn+1
+ On,c(µkn).

This proves the lemma for s = G(k).
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To deduce the result for general s > 0, let k be the unique integer with G(k− 1) < s ≤ G(k), and use

n1+ · · ·+ ns ≥ n1+ · · ·+ nG(k)− kg(k)≥
(

n!
µ

)1/n n
n+ 1

G(k)1+1/n
− On,c(µkn)

≥

(
n!
µ

)1/n n
n+ 1

s1+1/n
− On,c(s). �

Lemma 2.3. Consider A as in Lemma 2.1, and let (ni (A))i≥1 be the nondecreasing sequence of integers
m ≥ 0 where m occurs exactly dimA/mmk/mk+1 times. Write A(s)= n1(A)+ · · ·+ ns(A). Then

A(s)≥
(

n!
µ

)1/n( n
n+ 1

)
s1+1/n

− On(s),

where the implied constant only depends on n.

Proof. This is immediate from the last two lemmas. �

As usual, write Z(p) for the localization of Z at (the complement of) the prime ideal (p).

Lemma 2.4 (Lemma 2.4 of [Salberger 2007], cited as in the Appendix of [Browning et al. 2006]).
Let R be a noetherian local ring containing Z(p), A = R/pR, and consider ring homomorphisms
ψ1, . . . , ψs : R→Z(p). Let r1, . . . , rs be elements of R. Then the determinant of the s×s-matrix (ψi (r j ))

is divisible by pA(s).

Corollary 2.5 (Main Lemma 2.5 of [Salberger 2007]). Let X → Spec Z be the hypersurface in Pn+1
Z cut

out by the homogeneous polynomial f as above, so X is the generic fiber of X and X p is the special fiber
of X over p.

Let P be an Fp-point of multiplicity µ on X p and let ξ1, . . . , ξs be Z-points on X , given by some
primitive integer tuples, with reduction P. Let F1, . . . , Fs be homogeneous polynomials in x0, . . . , xn+1

with integer coefficients.
Then det(F j (ξi )) is divisible by pe where

e ≥
(

n!
µ

)1/n n
n+ 1

s1+1/n
− On(s).

Proof. Let P ′ be the image of P under the closed embedding X p ↪→ X , and R the stalk of X at P ′. Then
R is a noetherian local ring containing Z(p), and R/pR is the stalk of X p at P . Since P ′ is a specialization
of all the ξi (this is precisely what it means that the ξi have reduction P), it makes sense to evaluate an
element of R at each ξi , giving s ring homomorphisms R→ Z(p).

The Fi induce Z(p)-valued polynomial functions on an affine neighborhood of P ′, and hence give
elements of R. The statement now follows from the preceding two lemmas. �

Proposition 2.6. Let X be as above. Let ξ1, . . . , ξs be Z-points on X , and F1, . . . , Fs be homogeneous
polynomials in n+1 variables with integer coefficients. Then the determinant 1 of the s × s-matrix



The dimension growth conjecture, polynomial in the degree and without logarithmic factors 2269

(Fi (ξ j )) is divisible by pe, where

e ≥ (n!)1/n n
n+ 1

s1+1/n

n1/n
p
− On(s),

and where n p is the number of Fp-points on X p, counted with multiplicity.

Proof. This is identical to the proof of [Salberger 2013, Lemma 1.4], see also the appendix of [Walsh
2015] — but we have eliminated the dependence of the constant on d . �

Lemma 2.7. In the situation above, if p > 27d4 and X p is geometrically integral, i.e., the defining
polynomial f has absolutely irreducible reduction modulo p, then n p ≤ pn

+ On(d2 pn−1/2).

Proof. By [Cafure and Matera 2006, Corollary 5.6] the number of Fp-points of X p counted without
multiplicity is bounded by

pn+1
+ (d − 1)(d − 2)pn+1/2

+ (5d2
+ d + 1)pn

− 1
p− 1

≤ pn
+ On(d2 pn−1/2).

(This uses the lower bound on p and the condition on X p.)
The singular points of X p all lie in the algebraic set cut out by f and ∂ f

∂x0
, which can be assumed to be

nonzero without loss of generality. This is an algebraic set all of whose components have codimension 2
and the sum of the degrees of these components is bounded by d2. The standard Lang–Weil estimate
yields that there are On(d2 pn−1)≤ On(dpn−1/2) points on this algebraic set and hence at most that many
singular points, each of which has multiplicity at most d. Adding this term to the number of points
counted without multiplicity yields the claim. �

Lemma 2.8. In the situation above, with p > 27d4 and X p geometrically integral, we have n1/n
p /p−1≤

On(d2 p−1/2).

Proof. Apply the general inequality x1/n
− 1≤ x − 1 for x ≥ 1. �

We immediately obtain the following from Proposition 2.6.

Corollary 2.9. The determinant 1 from Proposition 2.6 is divisible by pe, where

e ≥ (n!)1/n n
n+ 1

s1+1/n

p+ On(d2 p1/2)
− On(s).

This is stated as Theorem 2.2 in [Walsh 2015], but our statement is more precise in terms of the implied
constants.

3. Points on projective hypersurfaces à la Walsh

3.1. Formulation of main result. The following result is the goal of this section and an improvement to
Theorem 1.3 of [Walsh 2015]. Call a polynomial f over Z primitive if the greatest common divisor of its
coefficients equals 1. For any f , we write ‖ f ‖ for the maximum of the absolute values of the coefficients
of f .
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Theorem 3.1.1. Let n> 0 be an integer. Then there exists c (depending on n) such that the following holds
for all choices of f, d, B. Let f be a primitive irreducible homogeneous polynomial in Z[x0, . . . , xn+1] of
degree d ≥ 1, and write X for the hypersurface in Pn+1

Q
cut out by f . Choose B ≥ 1. Then there exists a

homogeneous g in Z[x0, . . . , xn+1] of degree at most

cB(n+1)/(nd1/n) d4−1/nb( f )
‖ f ‖1/n·1/d1+1/n + cd1−1/n log B+ cd4−1/n,

not divisible by f , and vanishing at all points on X of height at most B.

Here the quantity b( f ) is defined in Definition 3.2.1; it always satisfies b( f )≤O(max(d−2 log‖ f ‖, 1)).
The main improvement over [Walsh 2015] lies in the polynomial dependence on the degree d.

We also immediately obtain the following, which is the essential tool for proving Theorem 2.

Corollary 3.1.2. For any primitive irreducible polynomial f ∈ Z[x0, x1, x2] homogeneous of degree d
and any B ≥ 1 we have

N ( f, B)≤ cB2/d d4b( f )
‖ f ‖1/d2 + cd log B+ cd4

≤ c′d4 B2/d ,

where c, c′ are absolute constants.

Proof. Apply Theorem 3.1.1 to obtain a polynomial g, and then apply Bézout’s theorem to the curves
defined by f and g. This yields the first inequality. For the second inequality we can use that b( f )/‖ f ‖1/d

2

is bounded because b( f )≤ O(max(d−2 log‖ f ‖, 1)). �

3.2. A determinant estimate. In this section we want to use the results of Section 2 for a number of
primes simultaneously. It is useful to introduce the following measure of the set of primes modulo which
an absolutely irreducible polynomial over the integers ceases to be absolutely irreducible.

Definition 3.2.1. For an integer polynomial f in an arbitrary number of variables we set b( f )= 0 if f
is not absolutely irreducible, and

b( f )=
∏

p

exp
(

log p
p

)
otherwise, where the product is over those primes p > 27d4 such that the reduction of f modulo p is not
absolutely irreducible.

For now we work with a degree d hypersurface in Pn+1 defined by a primitive polynomial f ∈
Z[x0, . . . , xn+1] which is absolutely irreducible. We first establish a basic estimate on b( f ), showing in
particular that it is finite.

Theorem 3.2.2 (explicit Noether polynomials, [Ruppert 1986, Satz 4]). Let d ≥ 2, n ≥ 3. There is a
collection of homogeneous polynomials 8 in

(n+d
n

)
variables over Z of degree d2

− 1, such that

‖8‖1 ≤ d3d2
−3
[(n+d

n

)
3d
]d2
−1
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(where ‖·‖1 denotes the sum of the absolute values of the coefficients), and such that the following holds
for any polynomial F in n+1 variables homogeneous of degree d over any field:

• If F is not absolutely irreducible, then all the8 vanish when applied to the coefficients of F , reducing
modulo the characteristic of the ground field if necessary.

• If F is absolutely irreducible over a field of characteristic 0, then one of the 8 does not vanish when
applied to the coefficients of F.

Corollary 3.2.3. b( f )≤ O(max(d−2 log‖ f ‖, 1)).

Proof. Write P for the set of prime numbers p > 27d4 modulo which f is not absolutely irreducible.
There exists a Noether form8 with coefficients in Z such that8 applied to the coefficients of f is nonzero,
but is divisible by any prime in P . In particular, the product of such p is bounded by c := ‖8‖1‖ f ‖deg8.
Now

log b( f )=
∑
p∈P

log p
p

≤

∑
27d4<p≤log c

log p
p
+

∑
log c<p∈P

log p
log c

≤max(log log c− 4 log d, 0)+ O(1)+
log c
log c

≤max(log log c− 4 log d, 0)+ O(1)

≤max(log(deg8 log‖ f ‖)− 4 log d, log log‖8‖1− 4 log d, 0)+ O(1),

where we have used that the function log x −
∑

p≤x log p/p is bounded (Mertens’ first theorem). Since
log log‖8‖1− 4 log d is bounded above, the claim follows. �

We now adapt [Walsh 2015, Theorem 2.3], keeping track of the dependency on the degree and on
b( f ).

Lemma 3.2.4. For any x > 0,
∑

p≤x log p ≤ 2x , where the sum extends over prime numbers not
exceeding x.

Proof. This is a classical estimate on the first Chebyshev function. �

Lemma 3.2.5. As x varies over positive real numbers we have
∑

p>x log p/p3/2
= O(x−1/2), where the

sum extends over prime numbers greater than x.

Proof. Estimate the density of prime numbers using the prime number theorem and compare the sum
with an integral. �

Proposition 3.2.6. Let (ξ1, . . . , ξs) be a tuple of rational points in X , let Fli ∈Z[x0, . . . , xn+1], 1≤ l ≤ L ,
1 ≤ i ≤ s, be homogeneous polynomials with integer coefficients, and write 1l for the determinant of
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(Fli (ξ j ))i j . Let 1 be the greatest common divisor of the 1l , and assume that 1 6= 0. Then we have the
bound

log|1| ≥
n!1/n

n+ 1
s1+1/n(log s− On(1)− n(4 log d + log b( f ))).

This is a more explicit variant of [Walsh 2015, Theorem 2.3].

Proof. Let P be the collection of prime numbers p such that either p ≤ 27d4 or X p is not geometrically
integral.

We now apply Corollary 2.9 to all prime numbers p ≤ s1/n not in P , yielding

log|1| ≥
n!1/nn
n+ 1

s1+1/n
∑

P 63p≤s1/n

log p
p+ On(d2 p1/2)

− On(s)
∑

p≤s1/n

log p.

The last term is bounded by On(1)s1+1/n .
In estimating the main term, we may use that 1/(p+On(d2 p1/2))≥ 1/p−On(d2)/p3/2. We can then

bound ∑
P 63p≤s1/n

log p
p+ On(d2 p1/2)

≥

∑
p≤s1/n

log p
p
−

∑
p∈P

log p
p
− On(d2)

∑
P 63p≤s1/n

log p
p3/2

≥
log s

n
−

∑
p≤27d4

log p
p
− log b( f )− O(1)− On

(
d2

∑
p>27d4

log p
p3/2

)

≥
log s

n
− log(27d4)− log b( f )− O(1)− On(d2(27d4)−1/2)

≥
log s

n
− 4 log d − log b( f )− On(1). �

3.3. The main estimates. We first establish that we can reduce to the case of absolutely irreducible f in
the proof of Theorem 3.1.1.

Lemma 3.3.1. If f ∈ Z[x0, . . . , xn+1] is homogeneous of degree d ≥ 1 and irreducible but not absolutely
irreducible, then there exists another polynomial g ∈ Z[x0, . . . , xn+1] of degree d, not divisible by f ,
which vanishes on all rational zeroes of f .

Proof. This is established in the first paragraph of Section 4 of [Walsh 2015]. �

Let us now work with a restricted class of homogeneous polynomials f , namely those which are
absolutely irreducible and for which the leading coefficient c f , i.e., the coefficient of the monomial xd

n+1,
satisfies

c f ≥ ‖ f ‖C−nd1+1/n

for some positive constant C which is allowed to depend on n (for this reason the factor n in the exponent
is in fact superfluous, but it simplifies the proof write-up below).

The two main results are the following:
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Lemma 3.3.2. For f as above, and B satisfying ‖ f ‖ ≤ B2d(n+1), there exists a homogeneous polynomial
g not divisible by f , vanishing at all zeroes of f of height at most B, and of degree

M = On(1)B(n+1)/(nd1/n) d4−1/nb( f )
‖ f ‖n−1d−1−1/n + d1−1/n log B+ On(d2).

Lemma 3.3.3. For f as above, and B satisfying ‖ f ‖ ≥ B2d(n+1), there exists a homogeneous polynomial
g not divisible by f , vanishing at all zeroes of f of height at most B, and of degree

M = On(d4−1/n).

These two lemmas together clearly imply the statement of Theorem 3.1.1, at least for polynomials f
satisfying the condition on leading coefficients.

We follow the exposition in [Walsh 2015, Section 4], and prove the two lemmas together. We shall
need the following.

Theorem 3.3.4 [Bombieri and Vaaler 1983, Theorem 1]. Let
∑r

k=1 amk xk = 0 (m = 1, . . . , s) be a system
of s linearly independent equations in r > s variables x1, . . . , xr , with coefficients amk ∈ Z. Then there
exists a nontrivial integer solution (x1, . . . , xr ) satisfying

max
1≤i≤r
|xi | ≤ (D−1

√
|det(AA>)|)1/(r−s).

Here A = (amk) is the matrix of coefficients and D is the greatest common divisor of the determinants of
the s× s minors of A.

Proof of Lemmas 3.3.2 and 3.3.3. Fix B ≥ 1, and let S be the set of rational points on the hypersurface
described by f of height at most B. Let M > 0 be such that there is no homogeneous polynomial g of
degree M , not divisible by f , which vanishes on all points in S; we shall show that M is bounded in
terms of n, B, d, ‖ f ‖ as stated. Let us assume in the following that M is bigger than some constant (to
be specified later) times d2.

Given an integer D, write B[D] for the set of monomials of degree D in n+ 2 variables, so |B[D]| =(D+n+1
n+1

)
. Write 4⊆ S for a maximal subset which is algebraically independent over monomials of degree

M , in the sense that applying all monomials in B[M] to 4 yields s = |4| linearly independent vectors.
Let A be the s × r matrix whose rows are these vectors, where r = |B[M]| =

(M+n+1
n+1

)
; each entry of

A is bounded in absolute value by B M . Since all polynomials in f · B[M − d] vanish on 4, and no
polynomials of degree M not divisible by f do by assumption on M , we have s = |B[M]| − |B[M − d]|.

Now A describes a system of linear equations whose solutions correspond to (the coefficients of)
homogeneous polynomials of degree M vanishing on all points in 4 and therefore all points in S; by
assumption, these polynomials are multiples of f and therefore have one coefficient of size at least
c f ≥ ‖ f ‖C−nd1+1/n

by the assumption on f . Hence Theorem 3.3.4 yields

1≤
√
|det(AA>)|(‖ f ‖C−nd1+1/n

)s−r ,
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where we write 1 for the greatest common divisor of the determinants of the s× s minors of A. Taking
logarithms, using the estimate |det(AA>)| ≤ s!(r B M)s obtained by estimating the size of the coefficients
of AA>, and using the estimate for 1 obtained from Proposition 3.2.6, this expands as follows:

n!1/n

n+ 1
s1+1/n(log s− On(1)− n(4 log d + log b( f )))

≤
log s!

2
+

s
2

log r + s M log B− (r − s)(log‖ f ‖− nd1+1/n On(1))

We can use the estimates log s! ≤ s log s and log r ≤ log(M + 1)n+1
≤ On(log M)≤ On(log s) to see

that the first two terms on the right-hand side are both in On(s1+1/n) and can hence be neglected by
adjusting the constant On(1) on the left-hand side. Dividing by Ms now yields:

n!1/n

n+ 1
s1/n

M
(log s− On(1)− n(4 log d + log b( f )))≤ log B−

r − s
Ms

(log‖ f ‖− nd1+1/n On(1)) (3-3-1)

The term s =
(M+n+1

n+1

)
−
(M−d+n+1

n+1

)
is a polynomial in M and d . We can write

s =
d Mn

n!
+ On(d2 Mn−1),

in particular log s = log d + n log M − On(1). By rearranging and applying the binomial series, which is
legal since d2/M is bounded above by an adjustable absolute constant, we also obtain

s1/n

M
=

d1/n

n!1/n + On

(
d2

M

)
.

Thus the left-hand side of the inequality above can be replaced by

d1/nn
n+ 1

(
log M − On(1)−

((
4−

1
n

)
log d +

(
1+ On

(
d2−1/n

M

))
log b( f )

))
,

where we have dropped terms On(d2−1/n log M/M) and On(d2−1/n log d/M) by adjusting the constant
in On(1).

Let us now estimate (r − s)/(Ms). We have r − s = (Mn+1)/((n+ 1)!)+ On(d Mn), so

r − s
Ms
=

1
d(n+ 1)

1+ On(d/M)
1+ On(d/M)

=
1

d(n+ 1)
+ On

(
1
M

)
.

Therefore inequality (3-3-1) becomes

d1/nn
n+ 1

(
log M − On(1)−

((
4−

1
n

)
log d +

(
1+ On

(
d2−1/n

M

))
log b( f )

))
≤ log B−

log‖ f ‖
d(n+ 1)

− On

(
log‖ f ‖

M

)
. (3-3-2)

Let us now assume that ‖ f ‖ ≤ B2d(n+1) and M ≥ d1−1/n log B. Then log‖ f ‖ ≤ 2d(n+ 1) log B ≤
On(d1/n M), so we can drop the last term on the right-hand side, as well as the On(log b( f )/M) on the
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left-hand side. Rearranging yields that

log M ≤ On(1)+
n+ 1
d1/nn

log B−
log‖ f ‖
nd1+1/n +

(
4−

1
n

)
log d + log b( f ),

so we obtain Lemma 3.3.2.
Now, on the other hand, assume that ‖ f ‖ ≥ B2d(n+1) and M ≥ 4d(n + 1). Rearranging inequality

(3-3-2) yields

log M ≤ On(1)+
(

4−
1
n

)
log d + (1+ On(d−1/n)) log b( f )−

log‖ f ‖
4nd1+1/n

≤ On(1)+max
{

3 log d,
(

4−
1
n

)
log d

}
,

where we have used

On(1) log b( f )−
log‖ f ‖

4nd1+1/n ≤ On(1)max(log log‖ f ‖− 2 log d, 0)−
log‖ f ‖

4nd1+1/n

≤max(0,−2 log d + log(On(1)4nd1+1/n))

≤ On(1)

by Corollary 3.2.3 and the lemma below. This establishes Lemma 3.3.3. �

Lemma 3.3.5. Let c > 0. For any x > 1 we have log log x − log(x)/c ≤ log c+ O(1).

Proof. Let C = supx>1(log log x−log x); note that the supremum exists, since it is taken over a continuous
function on ]1,∞[ which tends to −∞ at both ends of the interval. Now log log x − log(x)/c =
log c+ log log x1/c

− log x1/c
≤ log c+C . �

3.4. Finishing the proof. We use ideas from [Walsh 2015, Section 3] to finish the proof of Theorem 3.1.1.

Lemma 3.4.1. Let f ∈ C[x] be a polynomial of degree ≤ d, and write ‖ f ‖ for the maximal absolute
value among the coefficients. There exists an integer a, 0≤ a ≤ d , such that | f (a)| ≥ 3−d

‖ f ‖.

Proof. This is a statement about the ‖·‖∞-operator norm of the inverse of the Vandermonde matrix with
nodes 0, . . . , d , which can be deduced from [Gautschi 1962, Theorem 1]. �

Lemma 3.4.2. Let f ∈ C[x0, . . . , xn+1] be homogeneous of degree d. There exist integers a0, . . . , an

with 0≤ ai ≤ d such that | f (a0, . . . , an, 1)| ≥ 3−(n+1)d
‖ f ‖.

Proof. Dehomogenize by setting xn+1 = 1, and then use induction with the preceding lemma. �

Proof of Theorem 3.1.1. Take a nonzero f ∈ Z[x0, . . . , xn+1] homogeneous of degree d. Consider
a0, . . . , an as in the last lemma and let A = I + A0 ∈ SLn+2(Z), where I is the (n + 2) × (n + 2)
identity matrix and A0 has its last column equal to (a0, . . . , an, 0) and zero everywhere else. Note that
A−1
= I − A0.



2276 Wouter Castryck, Raf Cluckers, Philip Dittmann and Kien Huu Nguyen

Let f ′ = f ◦ A. By construction, the xd
n+1-coefficient of f ′ is ≥ 3−(n+1)d

‖ f ‖. Because of the
boundedness of the entries of A, we furthermore see that

‖ f ′‖ ≤ dd(n+ 2)d
(

n+ d + 1
n+ 1

)
‖ f ‖ ≤ exp(On(d1+1/n))‖ f ‖.

In particular, the xd
n+1-coefficient of f ′ is greater than C−nd1+1/n

‖ f ′‖ for some constant C depending
only on n. The polynomial f ′ is primitive if and only if f is, since they are related by the matrices A,
A−1 with integer coefficients, and b( f ) = b( f ′). Furthermore, if g′ is a homogeneous polynomial in
Z[x0, . . . , xn+1] vanishing on all zeroes of f ′ up to a certain height B ′, then g = g′ ◦ A−1 is a polynomial
of the same degree vanishing on all zeroes of f up to height B = B ′/(d + 1).

Since either Lemma 3.3.2 or Lemma 3.3.3 applies to f ′ and B ′, we obtain the desired statement
for f . �

4. Proofs of Theorems 1, 2, 3, 4, 6

4.1. On trivial bounds. In this subsection, we extend our notation to varieties defined over any field K
containing Q, and we write N (X, B) for the number of points in Pn(Q)∩ X (K ) of height at most B,
when X is a subvariety of Pn

K , and similarly we write Naff(Y, B) for the number of points in Zn
∩Y (K )∩

[−B, B]n , when Y ⊆ An
K .

Lemma 4.1.1. Let X ⊆ An
Q

be a (possibly reducible) variety of pure dimension m and degree d defined
over Q. Then the number Naff(X, B) of integral points on X of height at most B is bounded by d(2B+1)m .

When X is a hypersurface, this is the well-known Schwarz–Zippel bound, and even the general case
appears in many places in the literature, albeit often without making the bound completely explicit.

Proof. This is an easy inductive argument using intersections with shifts of coordinate hyperplanes.
In fact, the proof of [Browning and Heath-Brown 2005, Theorem 1] automatically gives this stronger
statement. �

Corollary 4.1.2. For an irreducible affine variety X in An of degree d and dimension < n there exists a
tuple (a1, . . . , an) of integers not on X , with |ai | ≤ d for every i . For every irreducible projective variety
X in Pn of degree d and dimension < n there exists a point in Pn(Q) of height at most d not on X.

Proof. The affine version is implied by the preceding lemma, and the projective version follows by
considering the affine cone. �

Lemma 4.1.3. Let X ⊆ An
Q

be an absolutely irreducible variety of dimension m and degree d not
defined over Q. Then the number Naff(X, B) of integral points on X of height at most B is bounded by
d2(2B+ 1)m−1.

By considering the affine cone over a projective variety, this result also applies to projective varieties
of dimension m, with bound d2(2B+ 1)m .
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Proof. For every field automorphism σ of Q, there is a conjugate variety Xσ . Since X is not defined
over Q, there exists a σ with Xσ

6= X . All Q-points of X necessarily also lie on Xσ . Since Xσ has
degree d , it is the intersection of hypersurfaces of degree≤ d , see for instance [Heintz 1983, Proposition 3].
Let Y be a hypersurface of degree ≤ d containing Xσ and not containing X . Then X ∩ Y is a variety of
pure dimension m− 1 and degree at most d2. Now Lemma 4.1.1 gives the result. �

The following allows us to reduce to the geometrically irreducible situation when counting points on
varieties.

Corollary 4.1.4. Let X ⊆ An be an irreducible variety over Q of dimension m and degree d which is not
geometrically irreducible. Then for any B ≥ 1 we have Naff(X, B)≤ d2(2B+ 1)m−1.

As above, this also applies to projective varieties.

Proof. Let K/Q be a finite Galois extension over which X splits into absolutely irreducible components,
and let Y be one of the components. Since all components are Galois-conjugate, the Q-points on X in
fact also lie on Y . Now the preceding lemma applied to Y gives the result. �

Remark 4.1.5. Note that this trivially proves Theorems 1 and 3 for irreducible, but not geometrically
irreducible varieties, and similarly for absolutely irreducible varieties defined over Q but not over Q. The
same applies for Theorem 2 by considering a projective curve as the union of an affine curve with a finite
number of points.

Thus we henceforth only need to concern ourselves with absolutely irreducible varieties defined over Q.

4.2. Affine counting. Our results for projective hypersurfaces from the last section yield the follow-
ing result for affine hypersurfaces, by refining the technique given in [Ellenberg and Venkatesh 2005,
Remark 2.3].

Proposition 4.2.1. Fix an integer n > 0. Then there exist c and e such that the following holds for all
f, B, d. Let f ∈ Z[x1, . . . , xn+1] be irreducible, primitive and of degree d. For each i write fi for the
degree i homogeneous part of f . Fix B ≥ 1. Then there is a polynomial g in Z[x1, . . . , xn+1] of degree at
most

cB1/d1/n
d2−1/n min(log‖ fd‖+ d log B+ d2, d2b( f ))

‖ fd‖
1/n·1/d1+1/n + cd1−1/n log B+ cd4−1/n,

not divisible by f , and vanishing on all points x in Zn+1 satisfying f (x)= 0 and |xi | ≤ B.

To prove Proposition 4.2.1 we need the following lemmas:

Lemma 4.2.2 [Browning et al. 2006, Lemma 5]. Let f ∈ Z[x1, . . . , xn+2] be a primitive absolutely
irreducible polynomial, homogeneous of degree d, defining a hypersurface Z in Pn+1. Let B ≥ 1. Then
either the height of the coefficients of f is bounded by On(Bd(d+n+1

n+1 )), or there exists a homogeneous
polynomial g of degree d vanishing on all points of Z of height at most B.
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Lemma 4.2.3. For F ∈ Z[x1, . . . , xn+2] an irreducible primitive homogeneous polynomial and 1≤ y ≤
‖F‖ we have

d4−1/n b(F)
‖F‖1/n·1/d1+1/n ≤ On(1)d2−1/n log y+ d2

y1/n·1/d1+1/n .

Proof. The function

x 7→
log x

x1/n·1/d1+1/n

on (1,∞) is monotonically increasing up to its maximum when x1/n·1/d1+1/n
= e, and monotonically

decreasing thereafter.
Let us write x = ‖F‖ and use d2b(F)≤ On(1)(log x + d2) by Corollary 3.2.3. By the monotonicity

considered above, there is nothing to show when y1/n·1/d1+1/n
≥ e. Otherwise,

2d2−1/n log y+ d2

y1/n·1/d1+1/n ≥ 2d2−1/n d2

y1/n·1/d1+1/n ≥ d4−1/n
(

1
e
+

1
y1/n·1/d1+1/n

)
,

and the left-hand side of the inequality in the statement is always bounded by

On(1)d2−1/n log x + d2

x1/n·1/d1+1/n ≤ On(1)d2−1/n
(

nd1+1/n

e
+

d2

x1/n·1/d1+1/n

)
,

yielding the claim. �

As mentioned above, the following proof follows [Ellenberg and Venkatesh 2005, Remark 2.3]; but
additionally we bring in the idea of forming the homogeneous polynomial FH for primes H in the range
(B/2; B] to control primitivity.

Proof of Proposition 4.2.1. By applying Lemma 3.3.1 to the homogenization of f , we may assume that
f is absolutely irreducible. For each natural number H , consider the polynomial FH ∈ Z[x1, . . . , xn+2]

given by FH (x1, . . . , xn+2)=
∑d

i=0 H i fi xd−i
n+2. Then FH is an irreducible homogeneous polynomial of

degree d. On the other hand, each integral point (x1, . . . , xn+1) ∈ Z( f )(Z) gives us a rational point
(x1, . . . , xn+1, H) in Z(FH )(Q), where Z( f ) stands for the hypersurface in An+1 given by f and Z(FH )

stands for the hypersurface in Pn+1 given by FH .
If B is bounded by some polynomial expression in d (to be determined later), then B1/(nd1/n) is bounded

by a constant depending only on n; hence we use Theorem 3.1.1 for F1, by which there exists a number c
depending only on n along with a homogeneous polynomial G1 in Z[x1, . . . , xn+2] of degree at most

cB1/d1/n
d4−1/n b(F1)

‖F1‖1/n·1/d1+1/n + cd1−1/n log B+ cd4−1/n,

not divisible by F1, and vanishing at all points on Z(F1)(Q) of height at most B. Since b(F1)= b( f )
and ‖F1‖ ≥ ‖ fd‖, by Lemma 4.2.3 we obtain

d4−1/n b(F1)

‖F1‖1/n·1/d1+1/n ≤ On(d2−1/n)
min(d2b( f ), log‖ f ‖+ d2)

‖ fd‖
1/n·1/d1+1/n .



The dimension growth conjecture, polynomial in the degree and without logarithmic factors 2279

Hence the polynomial g(x1, . . . , xn+1)= G1(x1, . . . , xn+1, 1) satisfies our proposition.
For any B ≥ 2 Bertrand’s postulate guarantees the existence of a prime B ′ in the interval (B/2, B].

Moreover, if B ′ - f0, then FB ′ is primitive. By Theorem 3.1.1 for FB ′ , there exists a number c depending
only on n along with a homogeneous polynomial G B ′ in Z[x1, . . . , xn+2] of degree at most

cB(n+1)/nd1/n
d4−1/n b(FB ′)

‖FB ′‖
1/n·1/d1+1/n + cd1−1/n log B+ cd4−1/n,

not divisible by FB ′ , and vanishing at all points on Z(FB ′)(Q) of height at most B.
It is clear that ‖FB ′‖ ≥ B ′d‖ fd‖ ≥ 2−d Bd

‖ fd‖, so by Lemma 4.2.3 we have

d4−1/n b(FB ′)

‖FB ′‖
1/n·1/d1+1/n ≤ On(1)

(
B
2

)−1/(nd1/n)

d2−1/n log‖ fd‖+ d log B+ d2

‖ fd‖
1/n·1/d1+1/n .

Furthermore b(FB ′) agrees with b(F1) up to a factor of exp(log B ′/B ′)≤ O(1). Hence we in fact have

d4−1/n b(FB ′)

‖FB ′‖
1/n·1/d1+1/n ≤ On(1)B−1/(nd1/n)d2−1/n min(log‖ fd‖+ d log B+ d2, b( f ))

‖ fd‖
1/n·1/d1+1/n .

Thus the polynomial g(x1, . . . , xn+1)= G B ′(x1, . . . , xn+1, B ′) is as desired.
From now on, we suppose that B > 2 and B ′ | f0 for all primes B ′ in the interval (B/2, B]. Then we

have ( ∏
B ′ prime

B/2<B ′≤B

B ′
)
| f0

If f0 6= 0 then we deduce that ∑
B ′prime,B/2<B ′≤B

log B ′ ≤ log| f0|.

By Lemma 4.2.2, we are done if f0 is large compared to Bd(d+n+1
n+1 ), so in the remaining case we have∑

B ′prime,B/2<B ′≤B

log B ′ ≤ d
(

d + n+ 1
n+ 1

)
log B− On(1)

Because of the well-known estimate

lim
x 7→+∞

∑
p≤x log p

x
= 1,

we see that B is necessarily bounded by a certain polynomial in d in this case, so we are done by the
discussion above.

If f (0) = 0, then by Corollary 4.1.2 there exists an integer point A = (a1, . . . , an+1) with
f (a1, . . . , an+1) 6=0 and |ai |≤d for all 1≤ i ≤n+1. We consider the shifted polynomial f̃ (x)= f (x+A),
for which f̃ (0) 6= 0, ‖ fd‖= ‖ f̃d‖, and b( f̃ )= b( f ). We apply the above discussion for f̃ and B̃ = B+d
to obtain a polynomial g̃(x) vanishing on all zeroes of f̃ of height at most B̃, and take g(x)= g̃(x − A).
This satisfies the required degree bound since g̃ does. �



2280 Wouter Castryck, Raf Cluckers, Philip Dittmann and Kien Huu Nguyen

Corollary 4.2.4. There exists a constant c such that for all d > 0 and all irreducible affine curves X ⊆A2
Q

of degree d, cut out by an irreducible primitive polynomial f ∈ Z[x1, x2], and all B ≥ 1 one has

Naff(X, B)≤ cB1/d min(d2 log‖ fd‖+ d3 log B+ d4, d4b( f ))
‖ fd‖

1/d2 + cd log B+ cd4.

Proof. Take n = 1 in Proposition 4.2.1 and apply Bézout’s theorem. �

If the absolute irreducibility of f can be explained by the indecomposability of its Newton polytope,
e.g., in the sense of [Gao 2001], then this allows for good bounds on b( f ) which get rid of the factor
log B. The following instance will be used to prove Theorem 6:

Corollary 4.2.5. There exists a constant c such that for all affine curves X ⊆ A2
Q

cut out by a polynomial
f ∈ Z[x1, x2] of the form

cd xd
1 + cd ′xd ′

2 +
∑
i,i ′

id ′+i ′d<dd ′

ci j x i
1x i ′

2

with d > d ′ > 0 coprime integers and cd , cd ′ 6= 0, and for all B ≥ 1, one has

Naff(X, B)≤ cd4(log|cdcd ′ | + 1)B1/d .

Proof. By dividing out by the greatest common divisor of the coefficients, we may suppose that f is
primitive. The presence of the edge (d, 0)–(0, d ′) in the Newton polytope of f is enough to guarantee
absolute irreducibility in any characteristic [Gao 2001, Theorem 4.11]. Therefore we can bound

b( f )≤
∏

p|cd cd′

exp
(

log p
p

)
≤ log|cdcd ′ | + 1

through Mertens’ first theorem as in Corollary 3.2.3. �

4.3. Proofs of our main results. We can now prove our main theorems, subject to the following proposi-
tions; they allow us to reduce to the case of hypersurfaces throughout, and will be established in Section 5
by projection arguments.

Proposition 4.3.1. Given a geometrically integral affine variety X in An of dimension m and degree d,
there exists a geometrically integral affine variety X ′ in Am+1 birational to X , also of degree d , such that
for any B ≥ 1 we have

Naff(X, B)≤ d Naff(X ′, cnden B),

where cn, en are constants depending only on n.
For m = 1, we can even achieve

Naff(X, B)≤ Naff(X ′, cnden B)+ d2.
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Proposition 4.3.2. Given a geometrically integral projective variety X in Pn of dimension m and degree d ,
there exists a geometrically integral projective variety X ′ in Pm+1 birational to X , also of degree d , such
that for any B ≥ 1 we have

N (X, B)≤ d N (X ′, cnden B),

where cn, en are constants depending only on n.
For m = 1, we can even achieve

N (X, B)≤ N (X ′, cnden B)+ d2.

Proof of Theorem 2. In the case of a planar curve, i.e., for n = 2, Corollary 3.1.2 gives the claim. For the
general case, we may assume that the given curve is geometrically integral by Remark 4.1.5, and then
reduce to n = 2 by applying Proposition 4.3.2 (where m = 1). �

Proof of Theorem 3. We may assume that the curve X is geometrically integral by Remark 4.1.5. In the
case of a planar curve, i.e., for n = 2, Corollary 4.2.4 yields that

N (X, B)≤ On((d3 log B+ d4)B1/d),

by observing that
d2 log‖ fd‖+ d3 log B+ d4

‖ fd‖
1/d2 ≤ d3 log B+ 2d4.

We can reduce the general case to n = 2 by applying Proposition 4.3.1 (where m = 1), yielding the same
estimate. �

Proof of Theorem 6. In the penultimate step of their proof of Theorem 1.1, Bhargava et al. [2020] establish
the bound

h2(K )≤ Od,ε(|1K |
1/4+ε)+

∑
β∈B

Naff( fβ, |1K |
1/2)

where B ⊆OK is a set of size Od(|1K |
1/2−1/d) and

fβ = y2
− NK/Q(x −β)= y2

− xd
− lower order terms in x .

Theorem 3 implies that

Naff( fβ, |1K |
1/2)≤ Od(|1K |

1/(2d) log|1K |),

yielding the desired result when d is even. If d is odd then instead of Theorem 3 we apply Corollary 4.2.5
with d ′ = 2, cd =−1, cd ′ = 1 to get rid of the factor log|1K |. �

For the proof of Theorem 4, we need the following explicit form of Proposition 1 of [Browning et al.
2006] with D = 1.
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Proposition 4.3.3. There exists a constant c such that for all d ≥ 3 and all polynomials f ∈ Z[x1, x2, x3]

of degree d such that the highest degree part h( f )= fd of f is irreducible, all finite sets I of curves C of
A3

Q
of degree 1 and lying on the hypersurface defined by f , and all B ≥ 1 one has

Naff

(
X ∩

(⋃
C∈I

C
)
, B
)
≤ cd6 B+ #I.

Proof. We write I = I1 ∪ I2 where I1 = {L ∈ I | Naff(L , B) ≤ 1} and I2 = {L ∈ I | Naff(L , B) > 1}. It
is clear that Naff

(
X ∩

⋃
L∈I1

L
)
≤ #I1. If L ∈ I2, then there exist a = (a1, a2, a3), v = (v1, v2, v3) ∈ Z3

such that H(a)≤ B, v is primitive and L(Q)= {a+ λv | λ ∈Q}. Since v is primitive we deduce that

L(Z)∩ [−B, B]3 = {a+ λv | λ ∈ Z, H(a+ λv)≤ B}.

So
#(L(Z)∩ [−B, B]3)≤ 1+

2B
H(v)

.

Since L ∈ I2 we have H(v) ≤ 2B and fd(v) = 0. On the other hand, for each point v with fd(v) = 0,
there are at most d(d − 1) lines L ∈ I2 in the direction of v, since each such line intersects a generic
hyperplane in A3 in a point which is simultaneously a zero of f and of the directional derivative of f in
the direction of v. Put Ai = {v ∈ P2(Q) | fd(v)= 0, H(v)= i} and ni = #Ai . Then, by Corollary 3.1.2,
there exists a constant c independent of f such that

∑
1≤i≤k ni ≤ cd4k2/d . By our discussion,

Naff

(
X ∩

(⋃
C∈I

C
)
, B
)
≤ #I1+ (d − 1)d

2B∑
i=1

ni

(
1+

2B
i

)
.

On the other hand, summation by parts gives the following:

2B∑
i=1

ni

(
1+

2B
i

)
=

2B−1∑
k=1

( k∑
i=1

ni

)(
2B
k
−

2B
k+ 1

)
+

( 2B∑
i=1

ni

)(
1+

2B
2B

)

≤ cd4
(2B−1∑

k=1

k2/d 2B
k(k+ 1)

+ 2(2B)2/d
)
.

Since d ≥ 3, one has
∑

k≥1 k2/d
· 1/(k(k+ 1)) <+∞ and B2/d

≤ B. Thus, by enlarging c, we have

Naff

(
X ∩

(⋃
C∈I

C
)
, B
)
≤ cd6 B+ #I

as desired. �

In order to prove Theorem 4, we now first consider the case of a surface in P3, with proof inspired by
the proof of Corollary 7.3 of [Salberger 2013] in combination with the improvements developed above.

Proposition 4.3.4. There exists a constant c such that for all polynomials f in Z[y1, y2, y3] whose
homogeneous part of highest degree fd is irreducible over Q and whose degree d is least 5, one has
Naff( f, B)≤ cd14 B.
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Proof of Proposition 4.3.4 for d ≥ 16. For any prime modulo which fd is absolutely irreducible, the
reduction of f is likewise absolutely irreducible, so b( f ) ≤ b( fd). Applying the usual estimate from
Corollary 3.2.3, Proposition 4.2.1 yields for each B ≥ 1 a polynomial g of degree at most

cd7/2 B1/
√

d , (4-3-1)

not divisible by f and vanishing on all points x in Zn satisfying f (x)= 0 and |xi | ≤ B, with c an absolute
constant. Let C be an irreducible component of the (reduced) intersection of f = 0 with g = 0. Call this
intersection C. If C is of degree δ > 1, then

Naff(C, B)≤ c′δ3 B1/δ(log B+ δ) (4-3-2)

by Theorem 3, for some absolute constant c′.
By Proposition 4.3.3, the total contribution of integral curves D of C of degree 1 is at most

c′′d6 B (4-3-3)

for some absolute constant c′′.
Suppose that C1, . . . ,Ck are irreducible components of the intersection of f = 0 and g = 0 and

deg(Ci )> 1 for all i . Furthermore, we assume that deg(Ci )≤ log B for all 1≤ i ≤m and deg(Ci )> log B
for all i > m. Since the function δ 7→ 4 logB(δ)+ 1/δ is decreasing in (0, log B/4) and increasing in
(log B/4,+∞), by enlarging c′, for all 1≤ i ≤ m we have

Naff(Ci , B)≤ c′B1/2(log B+ 1). (4-3-4)

On the other hand, if δ > log B then B1/δ is bounded, so (4-3-1) and (4-3-2) imply∑
m+1≤i≤k

Naff(Ci , B)≤ c′′′d14 B4/
√

d (4-3-5)

for some c′′′ independent of d and B.
Putting the estimates (4-3-1), (4-3-3), (4-3-4), (4-3-5) together proves the proposition when d is at

least 16. �

To give a proof of Proposition 4.3.4 for lower values of d than 16, one could try to get a form of
Theorem 3 with a lower exponent of the degree and repeat the above proof. We proceed differently: we
treat the values for d going from 6 up to 15 by inspecting the proof of [Browning et al. 2006, Theorem 2]
in combination with some of the above refinements, and the case of d = 5 by using [Salberger 2013,
Theorem 7.2] (at the cost of being less self-contained).

Proof of Proposition 4.3.4 with 6 ≤ d ≤ 15. Fix 6 ≤ d ≤ 15, let f ∈ Z[y1, y2, y3] be of degree d with
absolutely irreducible homogeneous part of highest degree, and let X be the surface described by f .

In [Browning et al. 2006, Theorem 2], the estimate Naff( f, B)≤ Od,ε(B1+ε) is established for every
ε > 0. However, using our Theorem 2 and Proposition 4.3.3, we shall show that their proof [Browning
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et al. 2006, pages 568–570] in fact gives the bound Naff( f, B)≤ Od(B), without any ε, which is sufficient
for our purposes.

Specifically, they first consider the case in which Lemma 4.2.2 applies, so all the rational points on
X of height up to B lie on a union of irreducible curves with sum of degrees at most d2. Applying
Theorem 2 to those curves of degree ≥ 2 and Proposition 4.3.3 for the contribution of curves of degree 1
yields the claim in this case.

In the remaining case, it is argued that there is an open subset U ⊆ X (specifically consisting of those
nonsingular points on X which have multiplicity at most 2 on the tangent plane section at the point) whose
complement consists of Od(1) integral components of degree Od(1); by the same argument as in the
preceding paragraph, the contribution of this complement is Od(B), so it suffices to estimate Naff(U, B).

Further, it is argued that the points on U of height at most B are covered by a certain collection
of irreducible curves. The subcollection I consisting of those curves of degree at most 2 satisfies
|I | ≤ Od,ε(B2/

√
d+2ε), so our Proposition 4.3.3 and [Browning et al. 2006, Proposition 1] gives a

contribution Od,ε(B+ B2/
√

d+3ε)≤ Od(B).
The remaining curves, of which there are no more than Od,ε(B2/

√
d), all contribute at most B1/3−1/(2

√
d)

[Browning et al. 2006, Proposition 2], so their total contribution is

Od,ε(B3/(2
√

d)+1/3+ε)≤ Od(B). �

Theorem 4.3.5 [Salberger 2013, Theorem 7.2]. Let X be a geometrically integral surface in P3
Q

of degree
d and Xns its nonsingular locus. Suppose that the hyperplane defined by x0 = 0 intersects X properly, and
identify A3 with the open subset of P3 given by x0 6= 0. There exists a positive constant c bounded solely
in terms of d such that the following holds: for every B ≥ 1 there exists a set of Od(B1/

√
d log B + 1)

geometrically integral curves Dλ on X of degree Od(1) such that

Naff

(
Xns \

⋃
λ

Dλ, B
)
≤ Od(B2/

√
d+c/ log(1+log B)).

Proof of Proposition 4.3.4 for d = 5. Suppose that the degree d of f is exactly 5, and let X be the surface
in A3

Q
given by f . We may assume that B ≥ 2. By Theorem 4.3.5, there is c> 0 such that for each B ≥ 2

there is a set C of at most

cB1/
√

d log B

geometrically integral curves C ⊆ A3
Q

of degree at most c and lying on X such that

Naff

(
Xns \

⋃
C∈C

C, B
)
≤ O(B2/

√
d+c/ log(log B))≤ O(B),

where Xns is the open subvariety of nonsingular points.
The complement of Xns in X is a union of irreducible curves the sum of whose degrees is bounded by

a constant. Applying Theorem 2 to those curves of degree ≥ 2 and Proposition 4.3.3 for the contribution
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of curves of degree 1 yields that the complement of Xns contributes at most O(B) points, which is
satisfactory for our purposes.

Similarly, the curves in C of degree 1 contribute at most O(cB1/
√

d log B + B) ≤ O(B) points by
Proposition 4.3.3, and the curves in C of degree ≥ 2 each contribute at most O(B1/2+ε) by Theorem 3,
again giving a contribution of size O(B). This proves the claim. �

Remark 4.3.6. We see that Proposition 4.3.4 for fixed d ≥ 6, and therefore also Theorems 1 and 4 for
fixed degree, already follow from combining [Browning et al. 2006] with the results of [Walsh 2015] and
Proposition 4.3.3. Similarly, for fixed degree d ≥ 5 one can use the results of [Salberger 2013]. However,
keeping track of the dependence on d in Section 3 permits us to use a considerably simpler argument for
fixed d ≥ 16 than in the works cited, and to furthermore obtain polynomial dependence on d .

It remains to prove Theorems 1 and 4. This closely follows [Browning et al. 2006, Lemma 8, Theorem 3].
The proofs are based on Proposition 4.3.4 and the following lemma.

Lemma 4.3.7. Let n ≥ 3 and X ⊆ Pn
Q

be a geometrically integral hypersurface of degree d. Then there
exists a nonzero form F ∈ Z[y0, . . . , yn] of degree at most (n+ 1)(d2

− 1) such that F(A)= 0 whenever
the hyperplane section HA ∩ X is not geometrically integral, where A ∈ (Pn)∗ and HA ⊆ Pn denotes the
hyperplane cut out by the linear form associated with A.

Proof. Suppose that X is given by f , a geometrically irreducible form of degree d . For A ∈ (Pn)∗ write
A = (a0 : a1 : · · · : an) ∈ (P

n)∗. Assuming a0 6= 0, one has that HA ∩ X is not geometrically integral if
and only if

f
(
−

a1

a0
x1− · · ·−

an

a0
xn, x1, . . . , xn

)
is reducible. Since n ≥ 3 and since X is geometrically integral, we have for a generic choice of B ∈ (Pn)∗

that HB ∩ X is also geometrically integral. Hence Theorem 3.2.2 implies that there exists a nonzero
form F0 in Z[y1, . . . , yn] of degree at most d2

− 1 such that F0(a1, . . . , an)= 0. Similarly, if ai 6= 0, we
produce a nonzero form Fi in Z[y0, . . . , yi−1, yi+1, . . . , yn] such that Fi (a0, . . . , ai−1, ai+1, . . . , an)= 0.
So F =

∏n
i=0 Fi is as we want. �

Proof of Theorem 4. Let n ≥ 3 and X ⊆ An
Q

be a geometrically integral hypersurface of degree d ≥ 5
described by a polynomial f ∈ Z[x1, . . . , xn] with absolutely irreducible highest degree part. We proceed
by induction on n, where the base case n = 3 is Proposition 4.3.4.

Now assume that n > 3 and the theorem holds for all lower n. Let fd = h( f ) be the homogeneous
part of highest degree, which describes a hypersurface in Pn−1. By Lemma 4.3.7 and Corollary 4.1.2,
there exists A = (a1, . . . , an) such that the hyperplane section { fd = 0} ∩ {

∑
ai xi = 0} is geometrically

integral of degree d , with all ai having absolute value at most n(d2
− 1).

Now

Naff( f, B)≤
∑

|k|≤n2(d2−1)B

Naff

(
{ f = 0} ∩

{∑
ai xi = k

}
, B
)
.
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For each k, the variety { f = 0}∩
{∑

ai xi = k
}

is a hypersurface in the affine plane
{∑

ai xi = k
}
, which

after a change of variables is described by a polynomial g ∈ Z[x1, . . . , xn−1] whose homogeneous part of
highest degree is absolutely irreducible by the construction of A. Now the induction hypothesis finishes
the proof. �

Proof of Theorem 1. We may assume that the variety in question is geometrically irreducible by
Remark 4.1.5, and can reduce to consideration of a hypersurface by Proposition 4.3.2. Hence let
n ≥ 3 and consider an absolutely irreducible polynomial f ∈ Z[x0, . . . , xn] homogeneous of degree d ≥ 5.

Then f defines not only a projective hypersurface X in Pn , but also an affine hypersurface in An+1,
the cone of X . We now trivially have

N ( f, B)≤ Naff( f, B),

so Theorem 4 finishes the proof. �

Remark 4.3.8. Using the explicit exponents obtained in Proposition 4.3.4 and in the proof of
Proposition 4.3.2 in Section 5, we can conservatively estimate e(n) ≤ 2n + 8 for the exponent in
Theorem 4, and e(n)≤ 2n3 for the exponent in Theorem 1.

5. Reduction to hypersurfaces via projection

In this section we prove Propositions 4.3.1 and 4.3.2, which allowed us to reduce to the case of hypersur-
faces in the proofs of our main theorems. This is an elaboration of familiar projection arguments, which
classically show that every variety is birational to a hypersurface, and which are used in the proofs of
[Browning et al. 2006, Theorem 1] and [Pila 1995, Theorem A]. The additional difficulty for us is that we
have to keep track of the dependence on the degree of the variety throughout. Our main auxiliary result is:

Lemma 5.1. Given a geometrically irreducible subvariety X ⊆ Pn of dimension m < n− 1 and degree d ,
one can find an (n−m− 2)-plane 3 disjoint from X and an (m+1)-plane 0, both defined over Q, such
that 3∩0 =∅, such that the corresponding projection map p3,0 : Pn

\3→ 0 satisfies

H(p3,0(P))≤ cnd2(n−m−1)2 H(P) (5-1)

for all P ∈ Pn(Q) \3, and such that p3,0|X is birational onto its image. Here cn is an explicit constant
depending only on n.

Because 3 is disjoint from X , the statement that p3,0|X is birational onto its image is equivalent to
saying that p3,0(X) is again a variety of degree d; see [Harris 1992, Example 18.16].

In order to prove Lemma 5.1, we first concentrate on finding an appropriate 3, which we think of as
living in the Grassmannian G(n−m− 2, n) consisting of all (n−m− 2)-planes in Pn . It is well-known
that the latter has the structure of an (m+2)(n−m−1)-dimensional irreducible projective variety through
the Plücker embedding

Pn−m−2,n : G(n−m− 2, n) ↪→ Pν :3 7→ det(P1, . . . , Pn−m−1),
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where ν =
( n+1

n−m−1

)
− 1 and (P1, . . . , Pn−m−1) is the (n − m − 1) × (n + 1) matrix whose rows are

coordinates for n −m − 1 independent points Pi ∈ 3. Here and throughout this section, for a matrix
M whose number of rows does not exceed its number of columns, we write det(M) to denote the tuple
consisting of its maximal minors, with respect to some fixed ordering.

Fixing such a 3 ∈ G(n−m− 2) and independent points P1, . . . , Pn−m−1 ∈3, we can also consider
the map

π3 : P
n
\3→ Pµ : P 7→ det(P, P1, . . . , Pn−m−1),

where µ =
(n+1

n−m

)
− 1. Writing π3 = (π3,0, . . . , π3,µ) we see that the nonzero π3, j can be viewed as

linear forms whose coefficients are coordinates of Pn−m−2,n(3), modulo sign flips. Note that π3, j (P)= 0
for all j if and only if P ∈3. In particular π3 is well-defined and easily seen to factor as

Pn
\3

p3,0
−−→ 0 ↪→ Pµ (5-2)

for all (m+1)-planes 0 such that 0 ∩3=∅.
Another theoretical ingredient we need is the Chow point FX associated with an irreducible m-

dimensional degree d variety X ⊆Pn . This is an irreducible multihomogeneous polynomial of multidegree
(d, d, . . . , d) in m + 1 sets of n + 1 variables such that for all tuples (H1, H2, . . . , Hm+1) of m + 1
hyperplanes in Pn one has FX (H1, . . . , Hm+1) = 0 if and only if H1 ∩ H2 ∩ · · · ∩ Hm+1 ∩ X 6= ∅. See
e.g., [Gelfand et al. 1994, Chapter 4].

Lemma 5.2. Let X be a geometrically irreducible degree d subvariety of Pn having dimension m < n−1
and consider

G X = {3 ∈ G(n−m− 2, n) |3∩ X =∅ and π3|X is birational onto its image}

with π3 as above. This is a dense open subset of G(n−m− 2, n) whose complement, when viewed under
the Plücker embedding, is cut out by hypersurfaces of degree less than (m+ 1)2d2.

Proof. Given a hyperplane H ⊆ Pµ we abusively write H ◦ π3 for π−1
3 (H) ∪ 3, since this is the

hyperplane in Pn cut out by the precomposition of π3 with the linear form associated with H . Define a
multihomogeneous degree (d, d, . . . , d) polynomial RX,3 in m+ 1 sets of µ+ 1 variables by letting

RX,3(H1, H2, . . . , Hm+1)= FX (H1 ◦π3, H2 ◦π3, . . . , Hm+1 ◦π3).

Note that its coefficients are degree (m+1)d polynomial expressions in the coordinates of Pn−m−2,n(3).
We will show that

G X = {3 ∈ G(n−m− 2, n) | RX,3 is absolutely irreducible}, (5-3)

which implies that the complement of G X is precisely the vanishing locus of the Noether irreducibility
polynomials from Theorem 3.2.2 evaluated in these coefficients. This indeed yields expressions in the
coordinates of Pn−m−2,n(3) of degree less than (m+ 1)2d2, where we note that not all these expressions
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can vanish identically, since generic 3’s do not meet X and generic projections are known to be birational
[Harris 1992, page 224].

We now prove (5-3). First note that 3∩ X 6= ∅ implies that RX,3 vanishes identically. Indeed, if
P ∈3 then all hyperplanes of the form H ◦π3 pass through P , so if moreover P ∈ X we see that RX,3

is identically zero. We can therefore assume that 3∩ X =∅. This ensures that π3(X) is an irreducible
projective variety of dimension m; see [Harris 1992, page 134], so we can consider its Chow point Fπ3(X),
which is an irreducible multihomogeneous polynomial of multidegree

(deg(π3(X)), deg(π3(X)), . . . , deg(π3(X)))

in the same m+ 1 sets of µ+ 1 variables as in the case of RX,3. It has the property that for all tuples
(H1, . . . , Hm+1) of hyperplanes in Pµ we have Fπ3(X)(H1, . . . , Hm+1)=0 if and only if H1∩· · ·∩Hm+1∩

π3(X) 6= ∅. But in this case π−1
3 (H1)∩ · · · ∩ π

−1
3 (Hm+1)∩ X 6= ∅ so that RX,3(H1, . . . , Hm+1) = 0.

Conversely, if RX,3(H1, . . . , Hm+1)= 0 then there exists a point P ∈ H1◦π3∩· · ·∩Hm+1◦π3∩X , which
since3∩X =∅ implies that π3(P)∈H1∩· · ·∩Hm+1∩π3(X) and hence that Fπ3(X)(H1, . . . , Hm+1)=0.
We conclude that Fπ3(X) and RX,3 have the same vanishing locus and because the former polynomial is
irreducible there must exist some r ≥ 1 such that

RX,3 = Fr
π3(X).

In particular RX,3 is irreducible if and only if r = 1. But this is true if and only if π3(X) has degree d,
which as we know holds if and only if π3|X is birational onto its image. �

Lemma 5.3. Using the assumptions and notation from Lemma 5.2, there exists an (n −m − 2)-plane
3 ∈ G X (Q) such that

H(3)≤ ((m+ 1)2d2)n−m−1(n−m− 1)!

when considered under the Plücker embedding.

Proof. Consider the rational map

π : (Pn)n−m−1 99K Pν : (P1, . . . , Pn−m−1) 7→ det(P1, . . . , Pn−m−1)

which is well-defined on the open U consisting of tuples of independent points. Observe that π(U )=
G(n −m − 2, n). By Lemma 5.2 there exists a polynomial F of degree less than (m + 1)2d2 which
vanishes on the complement of G X but which does not vanish identically on G(n − m − 2, n). The
polynomial

Q := F

det


x10 x11 . . . x1n

x20 x21 . . . x2n
...

...
. . .

...

xn−m−1,0 xn−m−1,1 . . . xn−m−1,n




is multihomogeneous of multidegree (deg(F), . . . , deg(F)) in the n−m− 1 blocks of n+ 1 variables
corresponding to the rows of the displayed matrix. Clearly Q vanishes on the complement of U , while it is
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not identically zero because Q(P1, . . . , Pn−m−1)= F(π(P1, . . . , Pn−m−1)) for any tuple of independent
points Pi .

Write

Q =
∑

j

Q j (x10, . . . , x1n)R j (x20, . . . , xn−m−1,n)

for nonzero Q j and linearly independent polynomials R j . Lemma 4.1.1 helps us to find a point P1∈Pn(Q)

of height at most deg(F) such that Q1(P1) 6= 0. By the linear independence of the R j one sees that
Q(P1, x20, . . . , xn−m−1,n) is not identically zero. Repeating the argument eventually yields a tuple of
points P1, P2, . . . , Pn−m−1 of height at most deg(F) such that Q(P1, . . . , Pn−m−1) 6= 0. In particular this
tuple of points belongs to U , i.e., they are independent, and π(P1, P2, . . . , Pn−m−1) ∈ G X (Q). From this
the lemma follows easily. �

Proof of Lemma 5.1. Let 3 be the Q-rational (n−m− 2)-plane produced by the proof of Lemma 5.3.
In particular 3∩ X =∅ and π3|X is birational onto its image. Then for all (m+ 1)-planes 0 such that
0∩3=∅ the projection map p3,0|X is also birational onto its image, thanks to the factorization from (5-2).

The proof of Lemma 5.3 moreover shows that 3 can be assumed to be the linear span of rational
points P1, . . . , Pn−m−1 ∈ Pn satisfying H(Pi ) ≤ (m + 1)2d2

=: B1. By Lemma 5.4 below we can find
linear forms L1, L2, . . . , Ln−m−1 with integral coefficients whose absolute value is bounded by

B2 :=
√
(n−m− 2)!(n+ 1)Bn−m−2

1

such that L i vanishes on P1, . . . , Pi−1, Pi+1, . . . , Pn−m−1 but not on Pi . Together these linear forms cut
out an (m+ 1)-plane 0 such that 0 ∩3=∅. Furthermore

p3,0(P)= P −
L1(P)
L1(P1)

P1− · · ·−
Ln−m−1(P)

Ln−m−1(Pn−m−1)
Pn−m−1 (5-4)

for all P ∈ Pn
\3. So we have

H(p3,0(P))≤ (n−m)((n+ 1)B1 B2)
n−m−1 H(P)= cd2(n−m−1)2 H(P) (5-5)

for some constant c that is easily bounded by an expression purely in n. �

Lemma 5.4. Let B, r, s ∈Z≥1 be integers such that s<r . Consider a linear system of linearly independent
equations

∑r
k=1 aik xk = 0 for i = 1, . . . , s, where all ai j are integers satisfying |ai j | ≤ B. There exists

a nonzero tuple of integers (x1, x2, . . . , xr ) violating the first equation but satisfying all other equations
such that

|xi | ≤
√
(s− 1)!r Bs−1 (5-6)

for all i .

Proof. This follows from [Bombieri and Vaaler 1983, Theorem 2], which strengthens Theorem 3.3.4. It
ensures the existence of r − s+ 1 linearly independent tuples of integers (x1, x2, . . . , xr ) satisfying the
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last s− 1 equations and meeting the bound (5-6). Since the space of solutions to the full linear system of
s equations has dimension r − s, at least one of these tuples must violate the first equation. �

We can now prove Propositions 4.3.1 and 4.3.2, reducing the situation of a general variety to a
hypersurface.

Proof of Proposition 4.3.2. Let X be a geometrically integral projective variety in Pn of dimension m
and degree d, where we may assume that n > m+ 1. We consider a projection p3,0 as in Lemma 5.1.
By dropping appropriately chosen coordinates, its image X ′ can be viewed as a hypersurface in Pm+1,
birational to X and hence also of degree d. In each fiber of p3,0 there are at most d points. The height
relation from Lemma 5.1 now immediately implies

N (X, B)≤ d N (X ′, cnd2(n−m−1)2 B)

for all B ≥ 1. This proves the claim for m > 1. For m = 1, consider the normalization X̃ → X and
compose it with the morphism X → X ′ induced by p3,0 to find a resolution of singularities X̃ → X ′.
The latter map is one-to-one away from the singular points of X ′, which together have no more than
(d − 1)(d − 2) preimages by [Kunz 2005, Theorem 17.7(b)]. But then the same claims must apply to
X→ X ′, yielding the stronger bound

N (X, B)≤ N (X ′, cnd2(n−2)2 B)+ d2,

as wanted. �

Proof of Proposition 4.3.1. Let X be a geometrically integral affine variety in An of dimension m and
degree d, where we may assume that m < n− 1. Let Z be the projective closure of X in Pn; we apply
Lemma 5.1 and shall argue later that we can take the (n−m−2)-plane3 to be contained in the hyperplane
Pn−1 at infinity. Let Z ′ ⊆ 0 be the image of Z under the projection p3,0. As above, by dropping some
coordinates we can view 0 as Pm+1

=Am+1
tPm where p3,0(Pn−1

\3) corresponds to Pm . In particular
p3,0 maps X to the affine part X ′0 = Z ′ ∩Am+1 of Z ′.

Consider P1, P2, . . . , Pn−m−1 and L1, L2, . . . , Ln−m−1 as in the proof of Lemma 5.1. Let P ∈ X be a
point having integer coordinates; when considered as a projective point of Z its coordinate at infinity is 1.
Since the coordinates at infinity of the Pi are 0, the projection formula (5-4) shows that p3,0(P) ∈ Z ′

admits integer coordinates such that the coordinate at infinity is

L1(P1)L2(P2) · · · Ln−m−1(Pn−m−1),

regardless of the choice of P . As a consequence, this is a multiple of the denominators appearing among
the coordinates of p3,0(P) when viewed as an affine rational point of X ′0. Therefore, postcomposing
with a coordinate scaling map Am+1

→ Am+1, we obtain another variety X ′ in Am+1 such that every
integral point P of X is mapped to an integral point of X ′ whose height satisfies the same upper bound as
in (5-5). All fibers of this map X→ X ′ have at most d points, and in the case of curves the map is even
one-to-one away from the singular points on X ′. So we can conclude as in the proof of Proposition 4.3.2.
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It remains to argue why we can take3 in the hyperplane at infinity. We first claim that the “good set” G Z

from Lemma 5.2 has a nonempty intersection with the Grassmannian parametrizing (n−m−2)-planes 3
contained in Pn−1. Indeed, it is apparent that the generic such3 does not intersect the (m−1)-dimensional
set Z ∩Pn−1 and hence satisfies 3∩ Z =∅. Furthermore, the argument from [Harris 1992, page 224]
showing that generic projections are birational leaves enough freedom to draw the same conclusion when
restricting to projections from planes at infinity. More precisely, if m = n− 2 then it suffices to project
from a point outside the cone spanned by Z and some random point q ∈ Z . Since this cone is irreducible
of dimension at most m+ 1= n− 1 and since Z 6⊆ Pn−1, the generic point at infinity indeed meets this
requirement. If m < n− 2 then the desired conclusion follows by applying the foregoing argument to
n−m− 1 successive projections from points.

So we can redo the proof of Lemma 5.3 starting from a polynomial F of degree less than (m+ 1)2d2

which vanishes on the complement of G X but which does not vanish identically on the Grassmannian of
(n−m− 2)-planes that are contained in the hyperplane at infinity; we just argued that such an F exists.
Then one can proceed with the same polynomial Q as before, but with zeroes substituted for the variables
x10, x20, . . . , xn−m−1,0. �

6. Lower bounds

We conclude with some lower bounds showing that one cannot make the dependence on d subpolynomial.
Our main auxiliary tool is the following lemma.

Lemma 6.1. For each pair of integers d ≥ 1, n ≥ 2 there exists an absolutely irreducible degree
d polynomial f ∈ Q[x1, x2, . . . , xn] which vanishes at all integral points (r1, r2, . . . , rn) for which
|ri | ≤ b(d − 1)/2nc for all i .

Proof. The lemma is immediate if d = 1, so we can assume that d ≥ 2. We claim that there exists a
polynomial

xd
1 + xd

2 + · · ·+ xd
n−1+ xd−1

n +

∑
0≤i1,...,in≤b(d−1)/nc

ai1,...,in x i1
1 x i2

2 · · · x
in
n

which vanishes simultaneously at the integral points (r1, r2, . . . , rn) satisfying⌊
d − 1

2n

⌋
−

⌊
d − 1

n

⌋
≤ ri ≤

⌊
d − 1

2n

⌋
for all i . From this the lemma follows, because indeed b(d − 1)/2nc− b(d − 1)/nc ≤ −b(d − 1)/2nc
and because the polynomial is absolutely irreducible, as its Newton polytope is indecomposable; see e.g.,
[Gao 2001, Theorem 4.11]. To verify the claim, note that every point (r1, r2, . . . , rn) imposes a linear
condition on the coefficients ai1,...,in , together resulting in a linear system of (b(d−1)/nc+1)n equations
in the same number of unknowns. It suffices to see that the matrix corresponding to its linear part is
nonsingular. But this matrix is the n-th Kronecker power of the Vandermonde matrix (r i )r,i where r and
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i range over {⌊
d − 1

2n

⌋
−

⌊
d − 1

n

⌋
, . . . ,

⌊
d − 1

2n

⌋}
and

{
0, . . . ,

⌊
d − 1

n

⌋}
,

respectively. Therefore its determinant is a power of the determinant of this Vandermonde matrix, from
which the desired conclusion follows. �

Proof of Proposition 5. If d = 1, 2 then we let X be a line or conic through a coordinate point, respectively,
so that we can take B = 1. If d ≥ 3 then we consider the affine curve defined by the polynomial f from
the proof of the foregoing lemma for n = 2. Let X be its projective closure, which has an extra height 1
point at infinity. With B = b(d − 1)/2c− b(d − 1)/4c one observes that

N (X, B)≥
(⌊

d − 1
2

⌋
+ 1

)2

+ 1≥
d2

4
=

d2

5
·

5
4
≥

d2

5
· B2/d . �

Note that using the same f and B one also finds that

Naff( f, B)≥
(⌊

d − 1
2

⌋
+ 1

)2

≥
d2

4 log d
B1/d log B

for all d ≥ 3, confirming our claim that, in the statement of Theorem 3, it is impossible to replace the
quartic dependence on d by any expression which is o(d2/ log d). In arbitrary dimension, the same
reasoning shows that there exists a positive constant c = c(n) such that for all integers d > 0 we can find
an absolutely irreducible degree d polynomial f ∈Q[x1, x2, . . . , xn] along with an integer B ≥ 1 such
that

Naff( f, B)≥ cd2 Bn−2 and N (X, B)≥ cd Bdim X ,

where X ⊆ Pn
Q

denotes the integral degree d hypersurface defined by the homogenization of f . This
shows that Theorems 1 and 4 cannot hold with e < 1 or e < 2, respectively.
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